ABSTRAK

Kata Kunci : The Dude, Quality of Service (QoS) Internet, Action Research, Bandwidth, Throughput, delay, Jitter dan Paket Loss.
ABSRACT

Computer networks and the Internet has great benefits once used one of the state-owned company PT. PLN Palembang. To sustain network statistics or divide it is necessary to test the network in the system of monitoring to facilitate the team in conducting routine monitoring. The use of tool use The Dude with the aim of monitoring the network using parameters QOS (Quality Of Service) is bandwidth, throughput, delay, packet loss. Good network if they meet the standards TIPHON. Testing is done with a test sample involves two cycles of peak hours and off-peak hours by the method of Action Research.

Keywords: fiture graphing Mikrotik, The Dude, Quality of Service (QoS), Internet, Bandwidth, Delay, Packet Loss, Jitter and Throughput
DAFTAR ISI

Nama Halaman	Halaman
HALAMAN JUDUL | i
HALAMAN PERSETUJUAN PEMBIMBING SKRIPSI | ii
HALAMAN PENGESAHAN PENGUJI SKRIPSI | iii
HALAMAN MOTTO DAN PERSEMBAHAN | iv
KATA PENGANTAR | v
DAFTAR ISI | vii
DAFTAR GAMBAR | xi
DAFTAR TABEL | xii
DAFTAR LAMPIRAN | xiv
ABSTRAK | xv

BAB I \ PENDAHULUAN

1.1. Latar Belakang ... 1
1.2. Perumusan masalah ... 3
1.3. Batasan Masalah .. 3
1.4. Tujuan Penelitian .. 4
1.5. Manfaat Penelitian .. 4
1.5.1. Bagi Penulis .. 4
1.5.2. Bagi Perusahaan .. 4
1.5.3. Bagi Akademik ... 5
1.6. Sestematis Penulisan .. 5
BAB II GAMBARAN UMUM PERUSAHAAN

2.1. Profil Perusahaan ... 7
 2.1.1. Sejarah Perusahaan .. 7
 2.1.2. Visi dan Misi Perusahaan ... 9
 2.1.2.1. Visi Perusahaan ... 9
 2.1.2.2. Misi Perusahaan ... 9
 2.1.3. Stuktur Organisasi Perusahaan 9
 2.1.4. Tugas Wewenang ... 11

BAB III TINJAUAN PUSTAKA

3.1. Teori Pendukung ... 16
 3.1.1. Analisis .. 16
 3.1.2. Jaringan Komputer ... 16
 3.1.3. Jenis – Jenis Jaringan Komputer 16
 3.1.4. Jaringan Local Area Network (LAN) 19
 3.1.5. Topologi Jaringan Komputer 20
 3.1.6. Perangkat Jaringan Komputer 27
 3.1.7. Quality of Servise (QOS) .. 31
 3.1.8. Parameter Kualitas jaringan 32
 3.1.9. Jenis – jenis Model QOS ... 35
 3.2. Hasil Penelitian Terdahulu ... 39
BAB IV METODE PENELITIAN

4.1. Lokasi dan waktu Penelitian ... 41
 4.1.1. Lokasi Penelitian ... 41
 4.1.2. Waktu Penelitian ... 41
4.2. Jenis Data ... 41
 4.2.1. Data Primer .. 41
 4.2.2. Data Skunder .. 42
4.3. Teknik Pengumpulan Data .. 42
 4.3.1. Metode Wawancara (Interview) 42
 4.3.2. Metode Pengamatan (Observasion) 43
 4.3.3. Stadi Pustaka .. 43
4.4. Alat dan Teknik Pengembangan Sistem 44
 4.4.1. Alat Perkembangan Sistem 44
 4.4.1.1. Model Proses .. 44
 4.4.2. Teknik pengembangan .. 45
 4.4.2.1. Action Research .. 45
4.5. Tahapan pengujian Jaringan ... 46

BAB V ANALISIS DAN PEMBAHASAN

5.1. Analisis ... 48
 5.1.1. Analisis Perangkat Jaringan 48
 5.1.2. Analisis Monitoring Jaringan 49
 5.1.3. Analisis Topologi Jaringan 49
5.2. Tool Monitoring dan Graphing di Mikrotik................................. 50
5.3. Monitoring dan Hasil Pengujian ... 53
 5.3.1. Monitoring Jaringan Local DUDE 53
 5.3.2. Hasil Monitoring Jaringan QOS 56
5.4. Pengujiandata... 77
 5.4.1. Menghitung nilai rata – rata total variabel 77
 5.4.2. Perbandingan Pengujian Variabel 79
 5.4.3. Menentukan banyak Kelas... 80
5.4. Pembahasan.. 81

BAB VI KESIMPULAN DAN SARAN

6.1. Simpulan... 83
 6.1.1. Kesimpulan Graphing pada Mikrotik 83
 6.1.2. Kesimpulan Aplikasi DUDE .. 83
 6.1.3. Kesimpulan Monitoring Jaringan Wireshark.............. 83
6.2. Saran .. 84

DAFTAR PUSTAKA ... xvi
HALAMAN LAMPIRAN ... xvii
BAB I
PENDAHULUAN

1.1. Latar Belakang

Local Area Network (LAN) merupakan jaringan milik pribadi di dalam sebuah gedung atau kampus yang berukuran sampai beberapa kilometer dengan tujuan memakai bersama sumberdaya dan saling bertukar informasi. Berdasarkan jenis jaringannya, teknologi LAN dapat dibedakan menjadi tiga karakteristik yaitu ukuran, teknologi transmisi, dan topologi. PT. PLN (Persero) Palembang yang bergerak dibidang sumberdaya listrik juga memiliki jaringan komputer terutama jaringan LAN. Jaringan LAN di PT. PLN (Persero) Palembang menggunakan topologi *star*. Dimana karakteristik dari topologi *star* yaitu banyak *client* yang dihubungkan ke server.

Kegiatan *monitoring* jaringan merupakan kegiatan yang dilakukan untuk mengelola suatu *sistem* jaringan dilokasi atau area tertentu. *Sistem monitoring* ini dipergunakan untuk mempermudah tim teknis dalam melakukan pemantauan secara rutin kondisi jaringan dilapangan. Berkaitan
dengan monitoring ini Teknik Informatika (TI) selaku unit yang menangani pelayanan jaringan internet serta mendukung pelayanan software dan aplikasi di PT. PLN (Persero) sangat membutuhkan teknologi monitoring ini agar sistem networking dapat terpantau secara maksimal. Pemantauan jaringan yang dilakukan di PT. PLN (persero) ini menggunakan aplikasi the dude yang sistem operasinya berbasis Mickrotik. Pemantauan jaringan ini berfokus pada pemantauan jaringan LAN yang ada di PT. PLN (Persero) Palembang.

Penulis berkeinginan untuk melakukan Analisis dan Monitoring jaringan pada PT yang berskala besar seperti halnya masalah pada Bandwidth, Throughput, Delay, jitter dan Paket Loss, yang dapat membuat efek yang besar bagi banyak aplikasi. Fitur Quality Of Service (QOS) ini dapat menjadikan Bandwidth, Throughput, Delay, jitter dan Paket Loss dapat diprediksi dan dicocokan dengan kebutuhan aplikasi yang digunakan didalam jaringan tersebut. Melalui QOS, seorang network administrasi dapat memberikan prioritas trafik tertentu. Suatu jaringan mungkin saja diimplementasikan QOS, misalnya frame relay, Ethernet pada situasi congestion management, teknik congestion management digunakan untuk mengatur dan memberikan prioritas trafik pada jaringan dimana aplikasi meminta lebih banyak bandwidth dari pada yang mampu disediakan jaringan dan dapat memgoptimalkan aplikasi yang kritis atau delay untuk dapat beroperasi sebagaimana mestinya.
Hasil yang didapat setelah melakukan monitoring adalah staf lebih cepat dalam mendeteksi trouble jaringan dan mempermudah dalam penanganannya. The dude juga memungkinkan untuk memonitoring services yang berjalan pada tiap network host, dan memberikan peringatan pada setiap perubahan statusnya.

Dari permasalahan di atas penulis tertarik untuk melakukan monitoring serta menganalisis jaringan LAN dengan metode action research untuk memberikan solusi terhadap permasalahan yang ada. Sehingga penulis berkeinginan mengangkat judul “Analisis dan Monitoring jaringan LAN pada PT. PLN (persero) Palembang” dari permasalahan yang ada.

1.2. Perumusan Masalah

Bagaimana cara Analisis dan Monitoring Jaringan LAN pada PT. PLN (Persero) Palembang.

1.3. Batasan Masalah

Batasan masalah yang akan dibahas pada penelitian ini adalah:

1. Memonitoring jaringan dengan menggunakan aplikasi the dude.
2. Menganalisis Quality of Service (QOS) jaringan LAN menggunakan parameter Bandwidth, Throughput, Delay, jitter dan Paket Loss
3. Penulis melakukan metode pengembangan dengan menggunakan Action Research sebagai dasar untuk tindakan selanjutnya
4. Melakukan pengujian data.
1.4. Tujuan Penelitian

Tujuan penelitian dalam skripsi ini adalah untuk memecahkan masalah yang sering terjadi di PT. PLN (persero) Palembang, serta melakukan analisis dan monitoring pada PT. PLN (persero) Palembang. Langkah selanjutnya yang penulis lakukan adalah mengatasi trouble yang sering terjadi dan juga mengatasi pengguna bandwidth yang berlebihan dengan menggunakan aplikasi the dude.

1.5. Manfaat Penelitian

1.5.1. Bagi Penulis

Bisa mendapatkan pengalaman dan pengetahuannya saat melakukan monitoring serta analisis langsung pada sebuah perusahaan besar.

1.5.2. Bagi Perusahaan

Dengan adanya monitoring ini diharapkan dapat mempermudah administrator jaringan dalam mengetahui dan menangani masalah pada jaringan yang ada serta member kenyamanan pada semua karyawan dalam pengiriman data dan kelancaran dalam mengakses internet tanpa takut mengalami kendala.
1.5.3. Bagi Akademik

1. Dapat menambah reverensi bagi penelitian selanjutnya serta dapat dijadikan arsip dokumen yang diharapkan bermanfaat.

2. Dapat mengetahui kemampuan mahasiswa dalam menerapkan ilmunya dan sebagai bahan evaluasi.

3. Dapat member gambaran tentang kesiapan mahasiswa dalam menghadapi dunia kerja sebenarnya.

1.6. Sistematis Penulisan

Untuk melengkapi gambaran yang jelas dalam penyusunan laporan tugas akhir ini, serta garis besar disajikan dalam 5 (lima) bab, yaitu sebagai berikut:

BAB I PENDAHULUAN

Bab ini berisikan tentang latar belakang, perumusan masalah, batasan masalah, tujuan dan manfaat, serta sistematika penulisan.

BAB II GAMBARAN UMUM

Bab ini berisikan tentang sejarah perusahaan, visi dan misi, stuktur organisasi, pembagian tugas dan aktivitas PT. PLN (Persero).
BAB III TINJAUAN PUSTAKA

Bab ini penulis akan membuat teori yang mendasari penulisan skripsi yang terkait dengan penelitian dan hasil-hasil dari penelitian terdahulu

BAB IV METODE PENELITIAN

Bab ini penulis akan membuat teori yang mendasari penulisan skripsi yang terkait dengan penelitian dan hasil-hasil dari penelitian terdahulu

BAB V HASIL DAN PEMBAHASAN

Dalam bab ini dilaporkan hasil-hasil yang diperoleh dalam penelitian dan pembahasan terhadap hasil yang telah dicapai maupun masalah-masalah yang ditentukan selama penelitian.

BAB VI PENUTUP

Pada bab ini mencoba untuk menarik simpulan dan mencoba untuk memberikan saran yang kiranya dapat bermanfaat pada PT. PLN (Persero) Palembang.
BAB II
GAMBARAN UMUM PERUSAHAAN

2.1. Profil Perusahaan

2.1.1. Sejarah Perusahaan

2.1.2. Visi dan Misi Perusahaan

2.1.2.1. Visi Perusahaan

Diakui sebagai perusahaan kelas dunia yang bertumbuh kembang, unggul dan terpercaya dengan bertumpu pada potensi insansi.

2.1.2.2. Misi Perusahaan

a. Menjalankan bisnis kelistrikan dan bidang lain yang berkait, berorientasi pada kepuasan pelanggan, anggota perusahaan dan pemegang saham.

b. Mejadi tenaga listrik sebagai media untuk mengaitkan kualitas kehidupan masyarakat.

b. Mengupayakan agar tenaga listrik menjadi pendorong kegiatan ekonomi.

d. Menjalankan kegiatan usaha yang berwawasan lingkungan.

2.1.3. Struktur Organisasi Perusahaan

Struktur adalah suatu urutan orang-orang dalam suatu organisasi untuk melaksanakan tugas dan kewajiban dengan rasa tanggung jawab. Organisasi adalah wadah atau wahana kegiatan
orang-orang yang bekerja sama untuk mencapai tujuan bersama. Jadi kesimpulannya dari Struktur Organisasi adalah suatu susunan dan hubungan antara tiap bagian serta posisi yang ada pada suatu organisasi atau purusahaan dalam menjalankan kegiatan operasional untuk mencapai tujuan. Struktur Organisasi mengambarkan dengan jelas pemisahan kegiatan pekerjaan atara yang satu dengan yang lain dan bagaimana hubungna aktivitas dan fungsi dibatasi.

Untuk PT. PLN (persero) Palembang memiliki pembagian tersendiri dalam menjalankan tugasnya masing-masing. Struktur Organisasi pada PT. PLN (persero) Palembang.

Gambar 2.1 : Struktur Organisasi PT PLN (Persero) WS2JB Palembang
2.1.4. **Tugas Wewenang**

a. General Manager

Bertanggung jawab dan memastikan terselenggaranya pengelolaan kegiatan permbangunan jaringan tenaga listrik sesuai yang tercantum dalam Daftar Isian Proyek (DIP), Petunjuk Operasional (PO) dan Anggaran Investasi (AI), serta bertanggung jawab terhadap biaya, jadwal, dan mutu sesuai target kinerja Unit Induk Pernbangunan yang ditetapkan oleh Direksi dengan mengoptimalkan sumber daya yang tersedia, serta memastikan bahwa semua program permbangunan yang dilaksanakan oleh Unit Induk Pernbangunan telah diketahui oleh Direksi, dengan tugas pokok meliputi:

1. Mengembangkan strategi dan kebijakan pokok untuk peningkatan kerja Unit Induk Pernbangunan.

2. Memastikan kelancaran koordinasi dan Service Level Agreement (SLA) dengan pihak supervisi konstruksi dan supervisi desain.

5. Menetapkan sistem manajemen kinerja dan sistem manajemen mutu Unit Induk Perbangunan serta pengendaliannya.

6. Mengembangkan hubungan kerja sama dengan pihak lain untuk kelancaran dan keberhasilan penyelesaian pernbangunan.

7. Mengembangkan dan memelihara kompetensi organisasi dan kompetensi anggota organisasi Unit Induk Perbangunan.

b. Bidang Perencanaan

Bertanggung jawab dan memastikan tersedianya perencanaan kerja atas pelaksanaan kegiatan perencanaan umum dan lingkungan hidup serta perencanaan konstruksi pernbangunan, penetapan kebijakan manajemen yang strategis dalam rangka pencapaian target kinerja Unit Induk Perbangunan. Serta mendukung restrukturisasi organisasi Unit Induk Perbangunan, dengan tugas pokok meliputi:

1. Menyusun Rencana Kerja dan Anggaran (RKA) Unit Induk Perbangunan Tahunan.

3. Menyiapkan analisa dampak lingkungan dan pengeoliakan lingkungan hidup serta perijinan yang terkait dengan fasilitas proyek dan pertanahan.
4. Merencanakan, memonitor, dan mengevaluasi kegiatan pembebasan tanah.

5. Melaksanakan perencanaan permbangunan yang sinergi dengan koordinasi bersama pihak supervisi konstruksi dan supervisi desain antara lain Approval Drawing dan Spesifikasi.

6. Mengkoordinir persiapan dan pelaksanaan kegiatan pengadaan termasuk menyiapkan dokumen pelelangan.

C. Bidang Distribusi

Bertanggung jawab dan memastikan terlaksananya pekerjaan konstruksi permbangunan, konsolidasi Unit Pelaksana Konstruksi sesuai dengan jadwal, biaya, dan kualitas pekerjaan melalui pemantauan hasil kerja, untuk pencapaian target kinerja Unit Induk pembangunan, dengan tugas pokok meliputi:

1. Mengkoordinasikan secara keseluruhan pengendalian permbangunan agar pelaksanaan pembangunan dapat dilaksanakan secara tepat waktu, biaya dan mutu.

2. Menyusun Basic Communication internal dan eksternal dengan pihak ketiga terkait dengan kelancaran pelaksanaan permbangunan.
3. Mengkoordinasikan kegiatan pelaksanaan administrasi teknik, meliputi administrasi tenaga kerja asing, administrasi kontrak (penanganan klaim kontrak, amandemen kontrak, berita acara pembayaran) dan pengendalian TKDN.

4. Mengelola persetujuan Master List dan kegiatan kepabeanan.

5. Mengelola pengendalian logistik dan administrasi monitoring terkait dengan pekerjaan pernbangunan.

6. Mengelola program Keselamatan Ketenagalistrikan.

7. Mengelola dan mengkoordinir Serah Terima Proyek dan Laporan Proyek Selesai di lingkungan Unit Induk Pernbanguna.

d. Bidang Keuangan dan Sumber Daya Manusia

Bertanggung jawab dan memastikan terselenggaranya pengelolaan keuangan dan sumber daya manusia untuk mendukung pelaksanaan pekerjaan kegiatan Unit Induk Pembangunan dalam mencapai target kinerja Unit Induk Pembangunan sesuai penetapan Direksi, dengan tugas pokok meliputi:

1. Menyusun perencanaan alokasi pendanaan dan realisasi pembayaran terkait dengan progres pembangunan.

2. Melaksanakan proses pembayaran sesuai dengan kewajiban dan komitmen, serta proses pembayaran sesuai dengan ketentuan kontrak.
3. Mengelola pelaksanaan kegiatan akuntansi, perpajakan, dan asuransi.

4. Merencanakan dan mengelola pengembangan kompetensi dan karir SDM.

5. Mengelola Administrasi SDM di Unit Induk dan Unit Pelaksana.

6. Mengelola manajemen mutu.
BAB III
TINJAUAN PUSTAKA

3.1. Teori Pendukung

3.1.1. Analisis

Analisis dalam hubunganya dengan bidang teknologi informasi merupakan proses menemukan permasalahan dan alternative pemecahan masalah yang relevan, dimana kegiatan proses pengumpuan kebutuhan diidentifikasikan pada perangkat lunak.

3.1.2 Jaringan Komputer

Menurut Sofana (2013 : 3), jaringan komputer (Computer Network) adalah suatu himpunan interkoneksi sejumlah komputer autonomous. Informasi yang melintas sepanjang media komunikasi, memungkinkan pengguna jaringan untuk saling bertukar data atau menggunakan perangkat lunak perangkat keras secara berbagi. Masing-masing komputer atau alat-alat lain yang dihubungkan pada jaringan disebut node.

3.1.3 Jenis-jenis Jaringan Komputer

Menurut Sofana (2013 : 3), untuk memudahkan memahami jaringan komputer para ahli kemudian membagi jaringan komputer berdasarkan beberapa kplasifikasi, di antaranya :
1. Area
 a. LAN *(Local Area Network)*

 LAN *(Local Area Network)* adalah jaringan local yang dibuat pada area terbatas, misalkan dalam satu gedung atau dalam satu ruangan. Kadangkala jaringan local diibut juga jaringan personal atau privat. LAN biasa digunakan pada sebuah jaringan kecil yang menggunakan *resource* secara bersama, seperti penggunaan *printer* secara bersama, penggunaan media penyimpanan secara bersama, dan sebagainya.

 b. MAN *(Metropolitan Area Network)*

 Teknologi yang digunakan MAN mirip dengan LAN. Hanya saja areanya lebih besar dan komputer yang dihubungkan pada jaringan MAN jauh lebih banyak dibandingkan dengan LAN. MAN merupakan jaringan komputer yang meliputi area seukuran kota dan gabungan beberapa LAN yang dihubungkan menjadi sebuah jaringan besar.

 c. WAN *(Wide Area Network)*

 WAN adalah kumpulan dari LAN yang dihubungkan dengan media komunikasi publik atau media lainnya, seperti jaringan telepon dan melibatkan area geografis yang cukup besar, seperti antar negara antar benua, atau jaringan yang berskala besar.
d. Internet

Internet dapat diartikan sebagai jaringan komputer luas dan besar yang mendunia, yaitu menghubungkan pemakai komputer dari suatu negara ke negara lain di seluruh dunia, dimana di dalamnya terdapat berbagai sumber daya informasi dari mulai yang statis hingga yang dinamis dan interaktif.

2. Media Penghantar

a. Wire Network

b. Wireless Network

Wireless Network adalah jaringan komputer yang menggunakan media penghantar berupa gelombang atau (infrared dan laser). Sedangkan pengguna infrared dan laser pada umumnya terbatas untuk jenis jaringan yang hanya melibatkan dua titik saja atau disebut juga point to point.
3. Fungsi

a. Client Server

Client Server adalah jaringan komputer yang salah satu (boleh lebih) komputernya difungsikan sebagai *server* untuk melayani komputer lain. Komputer yang dilayani oleh *server* disebut *client*. Layanan yang diberikan bisa berupa akses *web, email, file* atau yang lain. *Client server* banyak dipakai oleh *internet* atau *intranet*.

b. Peer to Peer

Peer to Peer adalah jenis jaringan komputer dimana setiap komputer bisa menjadi *server* sekaligus *client*. Setiap komputer dapat menerima dan memberikan akses dari satu komputer ke komputer lainnya.

3.1.4 Jaringan Local Area Network (LAN)

Jaringan Local Area Network biasa disingkat *LAN* adalah jaringan komputer yang jaringannya hanya mencakup wilayah kecil seperti jaringan komputer kampus, gedung, kantor, dalam rumah, sekolah atau yang lebih kecil. Saat ini, kebanyakan *LAN* berbasis pada teknologi *IEEE 802.3 Ethernet* menggunakan perangkat switch, yang mempunyai kecepatan transfer data 10, 100, atau 1000*Mbit/s*. Selain teknologi
Ethernet, saat ini teknologi 802.11b (atau biasa disebut Wi-fi) juga sering digunakan untuk membentuk LAN.

Tempat-tempat yang menyediakan koneksi LAN dengan teknologi Wi-fi biasa disebut hotspot. Pada sebuah LAN, setiap node atau komputer mempunyai daya komputasi sendiri, berbeda dengan konsep dump terminal. Setiap komputer juga dapat mengakses sumber daya yang ada di LAN sesuai dengan hak akses yang telah diatur. Sumber daya tersebut dapat berupa data atau perangkat seperti printer. Pada jaringan LAN, seorang pengguna juga dapat berkomunikasi dengan pengguna yang lain dengan menggunakan aplikasi yang sesuai.

3.1.5 Topologi Jaringan Komputer

Menurut Herlambang (2008: 21), topologi jaringan adalah susunan atau pemetaan interkoneksi antara node, dari suatu jaringan, baik secara fisik (riil) dan logis (virtual). Berikut adalah jenis-jenis topologi jaringan:

1. Topologi Bus

Topologi bus ini merupakan topologi yang banyak digunakan di awal penggunaan jaringan komputer karena topologi yang paling sederhana dibandingkan dengan topologi lainnya, satu dengan lainnya dengan membentuk seperti barisan melalui satu single kabel maka sudah bisa disebut menggunakan topologi bus.
Dalam topologi ini dalam satu saat, hanya satu komputer yang dapat mengirimkan data yang berupa sinyal elektronik ke semua komputer dalam jaringan tersebut dan hanya akan diterima oleh komputer yang dituju, karena hanya satu komputer saja yang dapat mengirimkan data dalam satu saat maka jumlah komputer sangat berpengaruh dalamunjuk kerja karena semakin banyak jumlah komputer, semakin banyak komputer akan menunggu giliran untuk bisa mengirim data dan efeknya unjuk kerja jaringan akan menjadi lambat. Sinyal yang dikirimkan oleh satu komputer akan dikirim ke seluruh jaringan dari ujung satu sampai ujung lainnya. Jika sinyal diperbolehkan untuk terus menerus tanpa bisa di interrupt atau dihentikan dalam arti jika sinyal sudah sampai di ujung maka akan berbalik arah, hal ini akan mencegah komputer lain untuk bisa mengirim data, karena untuk bisa mengirim data jaringan bus mesti bebas dari sinyal-sinyal. Untuk mencegah sinyal bisa terus menerima aktif (bouncing) diperlukan adanya terminator, di mana ujung dari kabel yang menghubungkan komputer-komputer tersebut harus di-terminate untuk menghentikan sinyal dari bouncing (berbalik) dan menyerap (absorb) sinyal bebas sehingga membersihkan kabel tersebut dari sinyal-sinyal bebas dan komputer lain bisa mengirim data. Dalam topologi bus ada satu kelemahan yang sangat mengganggu kerja dari semua komputer yaitu jika terjadi masalah dengan kabel
dalam satu komputer (ingat topologi bus menggunakan satu kabel menghubungkan komputer) misalnya kabel putus maka semua jaringan komputer akan terganggu dan tidak bisa berkomunikasi antar satu dengan lainnya atau istilahnya down. Begitu pula jika salah satu ujung tidak diterminasi, sinyal akan berbalik (bounce) dan seluruh jaringan akan terpengaruh meskipun masing-masing komputer masih dapat berdiri sendiri (stand alone) tetapi tidak dapat berkomunikasi satu sama lain.

![Gambar 3.1 Topologi Bus](http://www.jaringankomputer.com)

2. Topologi Star

Topologi ini mempunyai karateristik sebagai berikut:

a. Setiap node berkomunikasi langsung dengan central node, traffic data mengalir dari node ke central node dan kembali lagi.
b. Mudah dikembangkan, karna setiap node hanya memiliki kabel yang langsung terhubung ke centralnode.

c. Jika satu kabel node terputus yang lainnya tidak tergangu.

d. Dapat digunakan kabel yang “lower grade” karna hanya menghandel satu traffik node, biasanya digunakan kabel UTP.

Sumber: http://www.jaringankomputer.com

Gambar 3.2 Topologi Star

3. Topologi Tree

kekurangan topologi bus yang disebabkan persoalan broadcast traffic, dan kekurangan topologi star yang disebabkan oleh keterbatasan kapasitas port hub. Karakteristik yang dimiliki topologi tree mirip dengan topologi bus dan star. Begitu juga dengan peralatan, kabel, dan teknik pemasangannya. Walaupun disebut sebagai jaringan bus, namun tidak selalu harus menggunakan kabel coaxial, bisa saja menggunakan serat optik, wireless, atau jenis kabel yang lain. Topologi tree banyak digunakan untuk WAN.

Gambar 3.3 Topologi Tree

4. Topologi Ring

Topologi ini mempunyai karakteristik sebagai berikut:

a. Lingkaran tertutup yang berisi node-node.
b. Sederhana dalam layout.

c. Signal mengalir dalam satu arah, sehingga dapat menghindarkan terjadinya collision (dua paket data bercampur), sehingga memungkinkan pergerakan data yang cepat dan collision detection yang lebih sederhana.

d. Problem yang sama dengan topologi bus

e. Biasanya topologi ring tidak dibuat secara fisik melainkan direalisasikan dengan sebuah concentrator dan kelihatan seperti topologi star.

Sumber: http://www.jaringankomputer.com

Gambar 3.4 Topologi Ring

Cara kerja topologi ring dapat dijelaskan secara sederhana sebagai berikut. Apabila sebuah node ingin mengirim data maka node
tersebut hanya menunggu kehadiran *token* bebas. *Token* yang sampai di node pengirim kemudian ”ditempel” data yang akan dikirim. Selanjutnya data mengalir ke node penerima. *Node* lain tidak dapat mengirim data karena *token* sudah ”tidak bebas”. Setelah sampai di *node* penerima, data di-`copy`-kan dan data mengalir kembali ke *node* pengirim. Kemudian data ”dimusnahkan” dan *token* kembali ”bebas”.

Token dapat diibaratkan seperti sebuah kereta api yang sedang berjalan pada rel dan berhenti di setiap stasiun. Penumpang dapat naik kereta api dan kemudian kereta berangkat ke stasiun tujuan. Setelah tiba penumpang turun dan kereta melanjutkan perjalanan kembali. Walaupun ilustrasi ini tidak 100% cocok dengan kondisi sebenarnya, namun mudah – mudahan bisa memberikan gambaran umum bagaimana topologi *ring* bekerja.

5. Topologi *Mesh*

Topologi *mesh* dapat dikenali dengan hubungan *point to point* atau satu – satu ke setiap komputer. Setiap komputer terhubung ke komputer lain melalui kabel, bisa menggunakan kabel *coaxial*, *twisted pair*, bahkan serat optik. Pada awalnya jaringan *mesh* dikembangkan untuk keperluan militer, barang kali pusat kontrol senjata nuklir menggunakan topologi ini, apabila salah satu atau beberapa kabel putus masih tersedia rute alternatif melalui kabel yang lain.
3.6 Perangkat Jaringan Komputer

Menurut Herlambang (2008), Baik WAN ataupun LAN memiliki sejumlah perangkat yang melewatkan aliran informasi data. Penggabungan perangkat tersebut akan menciptakan infrastruktur WAN ataupun LAN. Perangkat-perangkat jaringan tersebut adalah:

1. *Router*

 Router adalah sebuah *device* yang berfungsi untuk meneruskan paket-paket dari sebuah *network* ke *network* yang lainnya (baik LAN ke LAN atau LAN ke WAN) sehingga *host-host* yang ada pada sebuah *network* bisa berkomunikasi dengan *host-host* yang ada pada *network* yang lain.
2. Hub

Hub adalah sebuah repeater yang memiliki banyak port (multi port) yang mendukung kabel twisted pair dalam sebuah topologi Star. Pada jaringan yang umum, sebuah port akan menghubungkan hub dengan komputer Server. Sementara itu port yang lain digunakan untuk menghubungkan hub dengan node-node. Penggunaan hub dapat dikembangkan dengan mengaitkan suatu hub ke hub lainnya. Hub tidak mampu menentukan tujuan. Hub hanya mentransmisikan sinyal ke setiap line yang terkoneksi dengannya, menggunakan mode half-duplex. Hub hanya memungkinkan user untuk berbagi jalur yang sama. Pada jaringan tersebut, tiap user hanya akan mendapatkan kecepatan dari bandwith yang ada. Misalkan jaringan yang digunakan adalah Ethernet 10 Mbps dan pada jaringan tersebut tersambung 10
unit komputer. Jika semua komputer tersambung ke jaringan secara bersamaan, maka bandwidth yang dapat digunakan oleh masing-masing user rata-rata adalah 1 Mbps.

![Gambar 3.7 Hub](http://www.jaringankomputer.com)

3. **Switch**

Switch adalah gabungan dari Hub dan Bridge yang berfungsi untuk meneruskan paket data dalam sistem komunikasi data. Switch dapat beroperasi dengan mode full-duplex dan mampu mengalihkan jalur dan memfilter informasi ke dan dari tujuan yang spesifik. Keuntungan menggunakan switch adalah karena setiap segmen jaringan memiliki bandwidth 10 Mbps penuh, tidak terbagi seperti pada hub.
4. **Modem**

3.1.7 Quality of Service (QOS)

Quality of Service (QOS) merupakan teknologi yang diterapkan dalam jaringan komputer untuk memberikan layanan yang optimal dan adil bagi para pengguna jaringan komputer. Quality of Service suatu network menuju ketingkat kecepatan dan keandalan penyampaian berbagai jenis beban data di dalam suatu komunikasi. (Silitongah, Morina, 2014 : 22).
3.1.8 Parameter Kualitas Jaringan

Parameter merupakan karakteristik dari hasil pengukuran suatu objek. Ukuran parameter kualitas jaringan LAN terhitung dari data sampel atau populasi. Beberapa parameter yang dijadikan refrensi umum untuk dapat melihat performasi dari jaringan LAN adalah bandwidth, delay, packet loss dan throughput. Ada 4 karakteristik untuk melakukan pengukuran kualitas layanan dalam sebuah jaringan:

1. Packet Loss

 Packet Loss merupakan suatu parameter yang menggambarkan suatu kondisi yang menunjukkan jumlah total paket yang hilang, dapat terjadi karena *collision* dan *congestion* pada jaringan dan hal ini berpengaruh pada semua aplikasi karena *retransmisi* akan mengurangi efisiensi jaringan secara keseluruhan. Beberapa penyebab terjadinya packet loss yaitu:

1. Congestion, disebabkan terjadinya antrian yang berlebihan dalam jaringan
2. Node yang bekerja melebihi kapasitas buffer
3. Memory yang terbatas pada node
4. Policing atau kontrol terhadap jaringan untuk memastikan bahwa jumlah trafik yang mengalir sesuai dengan besarnya bandwidth.

 Jika besarnya trafik yang mengalir didalam jaringan melebihi dari
kapasitas bandwidth yang ada maka policing control akan membuang kelebihan trafik yang ada.

2. *Delay*

Delay adalah tenggang waktu yang dibutuhkan mulai mengirim data sampai dengan data diterima, kualitas suatu jaringan sangat terpengaruh oleh besarnya suatu *delay*. Ada 3 jenis *delay* yang diukur pada jaringan LAN yaitu:

a. *Delay* propagasi adalah waktu yang dibutuhkan oleh sinyal informasi untuk bergerak dalam media komunikasi seperti kabel, serat optik, gelombang mikro dan satelit.

b. *Delay* transmisi adalah waktu yang dibutuhkan suatu sistem untuk melewati sejumlah paket data. *Delay* berbanding lurus dengan besarnyapaket data dan berbanding terbalik dengan kecepatan bandwidth jaringan tersebut.

c. *Delay* antrian adalah lamanya waktu yang dibutuhkan suatu paket data sebelum paket tersebut diteruskan ketujuannya. *Delay* ini juga termasuk *delay* yang terjadi pada perangkat jaringan.

3. *Bandwith*

Bandwith adalah lebar jalur yang dipakai untuk transmisi data atau kecepatan jaringan. Aplikasi yang berbeda membutuhkan *bandwidth* yang berbeda.
4. **Troughput**

Di dalam jaringan telekomunikasi *throughput* adalah jumlah data persatuan waktu yang dikirim untuk suatu titik jaringan atau suatu titik ke titik jaringan yang lain. Sistem *throughput* atau jumlah *throughput* adalah jumlah rata-rata data yang dikirimkan untuk semua terminal pada sebuah jaringan.

Secara umum terdapat empat kategori penurunan performansi jaringan berdasarkan nilai *packet loss* dan *delay* sesuai dengan versi TIPHON (Telecommunications and Internet Protokol Harmonization Over Network)

Tabel 3.1 Performasi jaringan IP berdasarkan packet loss

<table>
<thead>
<tr>
<th>Kategori Degradasi</th>
<th>Packet Loss</th>
<th>Indeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat Bagus</td>
<td>0 %</td>
<td>4</td>
</tr>
<tr>
<td>Bagus</td>
<td>3 %</td>
<td>3</td>
</tr>
<tr>
<td>Sedang</td>
<td>15 %</td>
<td>2</td>
</tr>
<tr>
<td>Buruk</td>
<td>25 %</td>
<td>1</td>
</tr>
</tbody>
</table>

Sumber: Diolah Sendiri

Tabel 3.2 Performasi jaringan IP berdasarkan delay

<table>
<thead>
<tr>
<th>Kategori Latensi</th>
<th>Besar Delay</th>
<th>Indeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat Bagus</td>
<td>< 150 ms</td>
<td>4</td>
</tr>
<tr>
<td>Bagus</td>
<td>150 s/d 300 ms</td>
<td>3</td>
</tr>
<tr>
<td>Sedang</td>
<td>300 s/d 450 ms</td>
<td>2</td>
</tr>
<tr>
<td>Buruk</td>
<td>> 450 ms</td>
<td>1</td>
</tr>
</tbody>
</table>

Sumber: Diolah Sendiri
Sedangkan menurut versi ITU-T (International Telecommunication Union- Telecommunication) terdapat tiga kategori penurunan kualitas jaringan berdasarkan standarisasi nilai packet loss dan delay

3.1.9 Jenis – Jenis Model QoS

Dalam memberikan servis yang berkualitas, beberapa model Qos sering digunakan untuk itu. Model-model tersebut akan banyak menentukan bagaimana proses terciptanya sebuah perbedaan servis dan kualitas. Berikut ini adalah beberapa model Qos yang banyak digunakan.

1. Best-Effort Model

Sesuai dengan namanya model Qos Best-Effort merupakan model servis yang dihantarkan kepada penggunanya akan dilakukan sebisa mungkin dan sebaik-baiknya tanpa ada jaminan apa-apa. Jika ada sebuah data yang ingin dikirim, maka data tersebut akan di kirim segera begitu media perantaranya siap dan tersedia. Data yang dikirim juga tidak dibatasi, tidak dikelasifikasikan, tidak perlu mendapatkan ijin dari perangkat manapun, tidak diberi policy, semuanya hanya berdasarkan siapa yang datang terlebih dahulu ke perangkat gateway. Dengan kata lain model Best-Effort ini tidak memberikan jaminan apa-apa terhadap reliabilitas, performa,
bandwidth, kelancaran data dalam jaringan, delay, dan banyak lagi parameter komunikasi data yang tidak dijamin. Data akan dihantarkan sebisa mungkin untuk sampai ke tujuannya. Jika hilang ditengah jalan atau tertunda dengan waktu yang cukup lama di dalam perjalanannya, maka tidak ada pihak maupun perangkat yang bertanggung jawab.

Model Best-Effort ini sangat cocok digunakan dalam jaringan dengan koneksi lokal LAN atau jaringan dengan koneksi WAN yang berkecepatan sangat tinggi. Model ini sangat tepat jika digunakan dalam jaringan yang melewatkan aplikasi dan data yang bermacam-macam dengan tingkat prioritas yang sama. Jadi semua aplikasi didalamnya memiliki kualitas yang sama. Contohnya misalnya penggunaan internet di rumah atau perkantoran yang digunakan untuk browsing, email, chatting, banyak aplikasi lain.

2. Integrated Service Model (IntServ)

Integrated Service Model atau disingkat IntServ merupakan sebuah model Qos yang bekerja untuk memenuhi berbagai macam kebutuhan Qos berbagai perangkat dan berbagai aplikasi dalam sebuah jaringan. Dalam model IntServ ini, para pengguna atau aplikasi dalam sebuah jaringan akan melakukan request terlebih dahulu mengenai servis dan Qos jenis apa yang mereka dapatkan,sebelum mereka mengirimkan data. Request tersebut biasanya dilakukan dengan menggunakan sinyal-sinyal yang jelas
dalam proses komunikasinya. Dalam request tersebut, pengguna jaringan atau sebuah aplikasi akan mengirimkan informasi mengenai profile traffic mereka ke perangkat Qos. Profile traffic tersebut akan menentukan hak-hak apa yang akan mereka dapatkan seperti misalnya berapa bandwidth dan delay yang akan mereka terima dan gunakan. Setelah mendapatkan konfirmasi dari perangkat Qos dalam jaringannya, maka pengguna dan aplikasi tersebut baru diijinkan untuk melakukan transaksi pengiriman dan penerimaan data. Transaksi data akan dilakukan dalam batasan-batasan yang telah diberikan oleh perangkat Qos tersebut tanpa kecuali.

3. Differentiated Service Model (DiffServ)

Model Qos ini merupakan model yang sudah lama ada dalam standarisasi Qos dari organisasi IETF. Model Qos ini bekerja dengan cara melakukan klasifikasi terlebih dahulu terhadap semua paket yang masuk kedalam sebuah jaringan. Pengklasifikasian ini dilakukan dengan cara menyisipkan sebuah informasi tambahan yang khusus untuk keperluan pengaturan Qos dalam header IP pada setiap paket. Setelah paket diklasifikasikan pada perangkat-perangkat jaringan terdekatnya, jaringan akan menggunakan klasifikasi ini untuk menentukan bagaimana traffic data ini diperlakukan, seperti misalnya perlakuan queuing, shaping dan policing nya. Setelah melalui semua proses tersebut, maka akan didapat sebuah aliran data yang sesuai
dengan apa yang dikomitmenkan kepada penggunanya. Ada pun sebuah model dari sistem monitoring Qos yang digunakan dalam penelitian ini meliput monitoring application, Qos monitoring, monitor, monitored objects:

1. Monitoring Application

Monitoring application merupakan sebuah antarmuka bagi administrator jaringan, yang berfungsi mengambil informasi lalu lintas paket data dari *monitor*, menganalisisnya dan mengirimkan hasil analisis pada pengguna. Hasil analisis tersebut akan digunakan administrator jaringan sebagai dasar melakukan operasi-operasi yang lain yang diperlukan dan direkomendasikan pada jaringan yang dikelolanya.

2. Qos Monitoring

Qos Monitoring, menyediakan mekanisme pemantauan *Qos* dengan mengambil informasi nilai-nilai parameter *Qos* dari lalu lintas paket data.

3. Monitor

Monitor, mengumpulkan dan merekam informasi lalu lintas paket data, yang selanjutnya melakukan pengkuran aliran paket data secara nyata dan melaporkan hasilnya kepada *monitoring application*.
4. Monitored Object

Monitored Object, merupakan informasi seperti atribut dan aktifitas yang dipantau di dalam jaringan. Di dalam konteks Qos, informasi-informasi tersebut merupakan aliran-aliran paket data yang dipantau secara waktu nyata. Tipe aliran paket data tersebut dapat diketahui dari source dan destination di layer-layer IP, port yang digunakan misalnya UDP atau TCP, dan parameter di dalam paket RTP.

3.2. Hasil Penelitian Terdahulu

Tabel 3.3 Hasil Penelitian Terdahulu

<table>
<thead>
<tr>
<th>No</th>
<th>Judul</th>
<th>Nama Peneliti atau Tahun</th>
<th>Hasil Penelitian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sistem monitoring dan availability server serta perangkat jaringan dengan menggunakan aplikasi opmanager dan gammu</td>
<td>Bambang Suhartono Tahun 2012</td>
<td>OpManager akan mudah mengetahui kondisi perangkat keras yang terhubung dalam jaringan seperti memantau kondisi router, memantau penggunaan PC, Server, Firewall, Virtual server, domain controller, memantau pengguna port pada switch serta menganalisa kondisi traffic jaringan.</td>
</tr>
<tr>
<td>2</td>
<td>Monitoring trafik jaringan dan pengaturan PC router berbasis web</td>
<td>Yermias Alvandy Oktario Wun”Anjik Sukmannji” Kurniawan Jatmika” Tahun 2014</td>
<td>Quality Of Service(QoS) merupakan kemampuan suatu network untuk menyediakan service yang lebih baik untuk user dalam membagi bandwidth sesuai kebutuhan data dan voice yang digunakan.</td>
</tr>
<tr>
<td>3</td>
<td>Analisis performansi dan coverage wireless local area network 802.11 B/G/N pada pemodelan sistem E-</td>
<td>Catur Budi Waluyo Tahun 2014</td>
<td>Untuk data rate yang ditentukan hasil QOS menunjukan nilai throughput333.59Kbps, 511.86Kbps, dan 606,33Kbps, hasil</td>
</tr>
<tr>
<td>LEARNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uji delai diperoleh 2.96ms, 1.6038ms. Jitter yang diperoleh yaitu 3.184ms, 2448ms, 2.201ms. Sedangkan nilai packet loss untuk semua data rate yaitu 0%. Terdapat selisih perhitungan sebesar 10.36% antara hasil perhitungan Teoritis dengan pengukuran dilapangan yang dikarnakan terjadi absorbsi, scettering, dan sensitivitas dari perangkat penerima.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BAB IV
METODE PENELITIAN

4.1. Lokasi dan Waktu Penelitian

4.1.1. Lokasi Penelitian

Penelitian dilakukan di PT. PLN (Persero) Palembang yang berkedudukan di jalan Kapten A. Rivai No. 37 Palembang.

4.1.2. Waktu Penelitian

Tabel 4.1 Jadwal Penelitian

<table>
<thead>
<tr>
<th>No</th>
<th>Rencana Kegiatan</th>
<th>April 2015</th>
<th>Maret 2015</th>
<th>Juni 2015</th>
<th>Juli 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identifikasi Masalah</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pengumpulan Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Analisis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pemecahan Masalah</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bimbingan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Penulisan Akhir Laporan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Penelitian ini dilakukan pada bulan maret 2015, setiap hari kerja (Senin sampai Jumat) pukul 07.30 WIB sampai dengan 16.00 WIB di PT. PLN (Persero) Palembang.

4.2. Jenis Data

4.2.1. Data Primer

Data primer adalah data asli yang dikumpulkan oleh perisetutuk menjawab masalah risetnya secara khusus. Data primer tersebut didapatkan oleh penulis secara langsung dari administrator jaringan di
PT. PLN (persero) Palembang, berupa laporan data jaringan dan juga data kerusakan komputer yang sering di alami.

4.2.2. Data Sekunder

Data sekunder merupakan data yang telah dikumpulkan oleh pihak lain bukan oleh perisetitu sendiri untuk tujuan yang lain. Dan mengandung arti bahwa periset sekedar mencatat, mengakses, atau meminta data tersebut (sudah berbentuk informasi) kepihak lain yang telah mengumpulkannya di lapangan. Data sekunder itu sendiri diperoleh penulis dari PT. PLN (persero) Palembang berupa data sejarah singkat, struktur organisasi, visi dan misi, dan pembagian tugas.

4.3. Teknik Pengumpulan Data

Adapun metode pengumpulan data yang dilakukan dalam penyusunan adalah sebagai berikut:

4.3.1. Metode Wawancara (Interview)

4.3.2. Metode Pengamatan (*Observation*)

4.3.3. Stadi Pustaka

4.4. Alat dan Teknik Pengembangan Sistem

4.4.1. Alat perkembangan Sistem

4.4.1.1. Model Proses

The Dude sebagai software monitoring server, software the dude akan diinstal pada sistem operasi windows 2012.

Agar aplikasi berjalan dengan lancar maka dibutuhkan spesifikasi minimum pada server yaitu dengan penggunaan processor minimum Pentium 4 (atau yang setara) dan RAM minimal 128 MB.

Kebutuhan perangkat keras dan lunak merupakan salah satu aspek utama yang yang diperhatikan dalam pembuatan proyek akhir ini tidak semua perangkat keras sesuai dengan kebutuhan perangkat lunak, missal pada modem, modem harus menggunakan spesifikasi yang sudah didukung oleh perangkat lunak. Oleh karena itu kebutuhan perangkat keras disesuaikan dengan perangkat lunak yang akan digunakan.

Sistem monitorng server yang dirancag diharapkan sesuai dengan fungsinya yaitu mampu melakukan monitoring pada parameter suatu jaringan yaitu bandwidth, packet loss dan jitter. Sehingga dibuat sebuah diagram alur sebagai pedoman jalur kerja sistem yang akan diimplementasikan nanti.
Untuk lebih jelasnya dari rancangan proyek ini, dapat dilihat dari gambar 4.1 berikut:

Gambar 4.1 sistem yang akanditerapkan

Deskripsi:

Jika terjadi *error* pada jaringan yang dimonitor, maka *the dude* akan mendeteksi dan memberikan output berupa laporan dan member kedipan pada icon *the dude* di monitor administrator, sehingga admin bisa langsung mengetahui kerusakan pada jaringan yang bermasalah.

4.4.2. Teknik pengembangan

4.4.2.1. *Action Research*

Menurut (Madya, S : 2006) Penelitian tindakan (*Action Research*) adalah suatu bentuk penelitian reflektif dari kolektif yang dilakukan oleh peserta-pesertanya dalam situasi sosial untuk meningkatkan penalaran dan keadilan praktik pendidikan dan peraktik
sosial mereka, serta pemahaman mereka terhadap praktik-praktik itu dan terhadap situasi tempat dilakukan praktik-praktik tersebut.

Ada empat ciri penelitian tindakan, yaitu:

1. Praktis dan langsung relavan untuk situasi actual dalam dunia kerja.
2. Menyediakan rangka kerja yang teratur untuk pemecahan masalah.
3. Fleksibel, adaptif dalam memperoleh perubahan-perubahan selama penelitian.
4. Hasilnya berguna untuk dimensi praktis.

4.5. Tahapan Pengujian Jaringan

Gambar 4.2 Tahapan Pengujian Jaringan

Dalam tahapan pengujian jaringan LAN, penulis melakukan 2 waktu pengujian yaitu pada jam sibuk dan jam tidak sibuk dan dilakukan dengan 5 sample dalam kurun waktu 3 hari pengujian. Parameter pengujian yang digunakan adalah Bandwidth, Delay, Throughput, Jitter, dan juga Paket Loss.
dengan menggunakan aplikasi Wireshark. Penulis juga akan menyatakan bahwa kondisi jaringan pada PT. PLN (Persero) baik atau tidak baik dengan mengikuti standar TIPHON.

Menurut (Zulfikar, Budiantara Nyoman : 181) Teknik statistik deskriptif digunakan untuk menganalisis secara deskriptif kualitas dari setiap variabel penelitian. Langkah – langkah pengujian deskritif adalah sebagai berikut:

1. Menghitung nilai rata – rata total variabel
2. Perbandingan pengujian variabel
BAB V
ANALISIS DAN PEMBAHASAN

5.1 Analisis

5.1.1 Analisis Perangkat Jaringan

Sampel yang punulis ambil pada PT.PLN (Persero) Palembang Palembang pada satu ruangan memiliki 30 unit PC (Personal Computer) desktop, yang di gunakan oleh para karyawan pada PT. PLN (Persero) Palembang. Jaringan komputer pada PT.PLN (Persero) Palembang pada umumnya digunakan untuk membantu proses pekerjaan, layanan administrasi, aplikasi online, sharing data, sharing printer dan lain sebagainya.

Koneksi internet yang digunakan pada PT. PLN (Persero) Palembang berasal dari ISP (Internet Service Provider) Telkom Speedy, dengan kecepatan mencapai 3 Mbps, dimana internet ini adalah yang menjadi layanan data bagi seluruh komputer yang ada pada rungan sampel yang di pilih oleh penulis.

Seorang pegawai dapat menggunakan internet selama jam kerja untuk melakukan browsing, pengiriman e-mail, penerimaan dan pengiriman data melalui sistem online.

5.1.2 Analisis Monitoring Jaringan

Monitoring Aktifitas Jaringan:

5.1.3 Analisis Topologi Jaringan

Jaringan yang di gunakan pada saat ini adalah topologi jaringan star, dimana setiap komputer terhubung dengan menggunakan media kabel jaringan yang di hubungkan ke Switch yang nantinya akan menjadi penghubung jaringan ke jaringan local ke jaringan internet melalu Mikrotik Router yang berada pada PT. PLN (Persero) Palembang.
Sumber: Diolah Sendiri

Gambar 5.1 Topologi Jaringan PT. PLN (Persero) Palembang

5.2 Tool Monitoring & Graphing di Mikrotik

Router yang sudah selesai kita setting dan sudah berjalan, bukan berarti akan kita tinggalkan begitu saja. terlebih router tersebut merupakan router backbone. Pada kebanyakan ISP bahkan akan melakukan monitoring selama 24 jam nonstop untuk memastikan kondisi router baik-baik saja. Dan jika terjadi sesuatu pada router yang membuat jaringan tidak berjalan sebagaimana mestinya, bisa segera ditangani dengan baik.
Begitu juga admin jaringan juga perlu mencatat penggunaan bandwidth untuk bahan laporan apakah bandwidth yang di dapatkan sesuai dengan informasi layanan bandwidth dari ISP, atau sekedar mencatat statistik penggunaan bandwidth oleh client. Untuk melakukan pencatatan dalam format graph di MikroTik, admin jaringan bisa menggunakan fitur "Graphing".

Hasil tampilan Gambar 5.2 Grafik Interface1 merupakan hasil pengamatan dari salah satu eternet yang ada pada mikrotik, yang di ambil menggunakan aplikasi browser mozilla firefox, atupun browser lainnya. pamanfaatan repot grafik ini difungsikan sebagai salah satu sarana agar PT. PLN (Persero) Palembang, dapat mengecek penggunaan layanan internet dalam rentang waktu tertentu pada jaringan yang ada pada PT. PLN (Persero) Palembang. hasil yang di dapat oleh penulis repot grafik mikrotik :

Ip dari Mikrotik /graphs/
Pada gambar 5.2 grafik interface1, tampak grafik jaringan internet yang ada pada PT. PLN (Persero) Palembang, pengaturan tampilan dari lima menit rata-rata, tiga puluh menit rata-rata, dua jam rata-rata, dan satu hari rata-rata.

Gambar 5.3 Grafik Interface 2

Penjelasan dari gambar gambar 5.2 grafik interface1 sebagai contoh penjelasan, Grafik tiga puluh menit rata-rata di sana dapat di lihat penggunaan layanan internet pada layanan download 2.04Mb, sedangkan upload dengan kecepatan 199.01kb, dengan rata-rata download 186.06kb, dengan rata-rata upload 18.84kb, dengan arus download 1.52kb sedangkan untuk arus upload 1.96kb, dan penggunaan layanan grafik repot ini dapat di fungsikan sebagai acuan berupa repot penggunaan layanan internet yang ada pada PT. PLN (Persero) Palembang.
5.3 Monitoring dan Hasil Pengujian

5.3.1 Monitoring Jaringan Local DUDE

Setelah installasi aplikasi DUDE selesai penulis installa pada komputer yang biasa digunakan untuk memonitoring jaringan pada PT. PLN (Persero) Palembang penulis mendapatkan hasil monitoring yang dapat dilihat pada tabel 5.1 Keterangan Warna.

Tabel 5.1 Keterangan Warna:

<table>
<thead>
<tr>
<th>No</th>
<th>Warna</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WarnaHijau</td>
<td>Jaringan Dan Peralatan Dalam KondisiBaik (UP)</td>
</tr>
<tr>
<td>2</td>
<td>WarnaMerah</td>
<td>Ada gangguan jaringan atau peralatan (down)</td>
</tr>
<tr>
<td>3</td>
<td>WarnaOrange</td>
<td>Ada Service yang time out atau dalam interval mengalami sesekali time out</td>
</tr>
</tbody>
</table>

(Sumber : http://www.mikrotik.com/thedude.php)

Pada tampilan gambar 5.4 tampilan scand DUDE ini seluruh komputer yang ada pada PT. PLN (Persero) Palembang, melakukan aktifitas secara normal, seluruh nya berjaln secara lancar, tanpa ada salah satu alat, komputer yang mengalami putusnya koneksi atupun mengalami sevice yang time out.
Gambar 5.4 Tampilan Scand DUDE

Sedangkan pada gambar 5.5 tampilan scand DUDE 2 di tampilkan bahwa ada salah satu komputer dengan IP Address 172.16.1.77 menampilkan warna merah pada tampilan aplikasi DUDE hal ini di sebabkan komputer tersebut melakukan aktifitas layanan internet melebihi batasanya, pada pembatasan Bandwidth, terlihat dari tampilan paket yang di gunakan oleh komputer tersebut.
Gambar 5.5 Tampilan Scand DUDE 2

Sedangkan pada gambar 5.6 tampilan scand DUDE 3 terdapat beberapa komputer yang mengalami status warna orange, hijau dan merah, dengan perbedaan masing-masing, penulis dapat menjelaskan aplikasi dude ini dapat di gunakan untuk pengawasan secara langsung pada jaringan pada PT. PLN (Persero) Palembang.

Gambar 5.6 Tampilan Scand DUDE 3
5.3.2 Hasil Monitoring Jaringan QoS

Wireshark merupakan salah satu dari sekian banyak tool Network Analyzer yang banyak digunakan oleh Network administrator untuk menganalisa kinerja jaringannya termasuk protokol didalamnya. Wireshark banyak disukai karena interfacenya yang menggunakan Graphical User Interface (GUI) atau tampilan grafis.

Wireshark mampu menangkap paket-paket data atau informasi yang berseliweran dalam jaringan. Semua jenis paket informasi dalam berbagai format protokol pun akan dengan mudah ditangkap dan dianalisa. Karenanya tak jarang tool ini juga dapat dipakai untuk sniffing (memperoleh informasi penting spt password email atau account lain) dengan menangkap paket-paket yang berjalan di dalam jaringan dan menganalisisnya.

Gambar 5.7 Wireshark Layout
Hasil Monitoring Jaringan QoS (Quality of Service) pada PT.PLN (Persero) Palembang, penulis melakukan perhitungan QoS (Quality of Service) selama tiga hari yang di ambil dari lima komputer yang ada pada PT.PLN (Persero) Palembang, dan pengetesan pun di bagi dalam dua tahap yaitu pada saat layanan internet sedang banyak di gunakan, jam sibuk dan pada saat layanan internet tidak sedang sibuk, atau sedang tidak banyak pengguna layanan internet, pada saat jam istirahat karyawan dalam beraktifitas kerja, pada PT.PLN (Persero) Palembang. berikut hasil laporan penulis dalam melakukan penelitian pada PT.PLN (Persero) Palembang, parameter QoS (Quality of Service) yang dilaporkan oleh penulis setelah melakukan pengamatan pada PT.PLN (Persero) Palembang yaitu berupa hasil dari:

A. Bandwidth

Bandwidth adalah luas atau lebar cakupan frekuensi yang digunakan oleh sinyal dalam medium transmisi. Frekuensi sinyal diukur dalam satuan Hertz. Di dalam jaringan komputer, bandwidth sering digunakan sebagai suatu sinonim untuk kecepatan transfer data (transfer rate) yaitu jumlah data yang dapat dibawa dari sebuah titik ke titik lain dalam jangka waktu tertentu (pada umumnya dalam detik). Jenis bandwidth ini biasanya diukur dalam Mbps (Mega bits per second). Untuk pengukuran bandwidth peneliti menggunakan pengujian
langsung yang di lakukan pada situs untuk mendapatkan hasil ukuran bandwidth, berikut laporan yang di dapat oleh penulis selama melakukan penelitian pada PT.PLN (Persero) Palembang:

Tabel 5.2 *Bandwidth* pada Jam Tidak Sibuk :

<table>
<thead>
<tr>
<th>No PC</th>
<th>IP Address</th>
<th>Bandwidth (Mbps) Hari Pertama</th>
<th>Bandwidth (Mbps) Hari Kedua</th>
<th>Bandwidth (Mbps) Hari Ketiga</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Satu</td>
<td>172.16.1.4</td>
<td>2.8</td>
<td>2.93</td>
<td>2.95</td>
</tr>
<tr>
<td>PC Dua</td>
<td>172.16.1.9</td>
<td>2.85</td>
<td>2.77</td>
<td>2.97</td>
</tr>
<tr>
<td>PC Tiga</td>
<td>172.16.1.26</td>
<td>2.9</td>
<td>3.04</td>
<td>2.97</td>
</tr>
<tr>
<td>PC Empat</td>
<td>172.16.1.56</td>
<td>3.01</td>
<td>2.91</td>
<td>2.94</td>
</tr>
<tr>
<td>PC Lima</td>
<td>172.16.1.98</td>
<td>2.84</td>
<td>2.91</td>
<td>2.87</td>
</tr>
</tbody>
</table>

Dari tabel 5.2 hasil yang di dapat oleh penulis adalah pembagian kapasitas bandwidth, yang rata-rata sama yang di dapat dari ujicoba yang di lakukan selama tiga hari pada lima komputer yang berbeda, dengan pembagian yang hampir sama hampir mendekati ukuran batas *Bandwidth* yang ada pada PT.PLN (Persero) Palembang.

Tabel 5.3 *Bandwidth* pada Jam Sibuk :

<table>
<thead>
<tr>
<th>No PC</th>
<th>IP Address</th>
<th>Bandwidth (Mbps) Hari Pertama</th>
<th>Bandwidth (Mbps) Hari Kedua</th>
<th>Bandwidth (Mbps) Hari Ketiga</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Satu</td>
<td>172.16.1.4</td>
<td>1.28</td>
<td>1.13</td>
<td>0.26</td>
</tr>
<tr>
<td>PC Dua</td>
<td>172.16.1.9</td>
<td>1.46</td>
<td>0.38</td>
<td>0.19</td>
</tr>
<tr>
<td>PC Tiga</td>
<td>172.16.1.26</td>
<td>1.39</td>
<td>1.18</td>
<td>1.6</td>
</tr>
<tr>
<td>PC Empat</td>
<td>172.16.1.56</td>
<td>1.52</td>
<td>0.56</td>
<td>0.67</td>
</tr>
<tr>
<td>PC Lima</td>
<td>172.16.1.98</td>
<td>1.2</td>
<td>0.47</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Hasil pengujian yang di dapat oleh penulis pada kecepatan bandwidth pada jam kerja di mana kondisi hampir semua
kegiatan di lakukan dengan menggunakan internet adalah kondisi yang baik di mana pembagian kecepatan bandwidth merata, antara komputer yang satu dan yang lainnya.

B. Throughput

Yaitu kecepatan (rate) transfer data efektif, yang diukur dalam bps. Throughput merupakan jumlah total kedatangan paket yang sukses yang diamati pada tujuan selama interval waktu tertentu dibagi oleh durasi interval waktu tersebut.

<table>
<thead>
<tr>
<th>Katagori Throughput</th>
<th>Throughput</th>
<th>Indeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat Bagus</td>
<td>100 %</td>
<td>4</td>
</tr>
<tr>
<td>Bagus</td>
<td>75 %</td>
<td>3</td>
</tr>
<tr>
<td>Sedang</td>
<td>59 %</td>
<td>2</td>
</tr>
<tr>
<td>Jelek</td>
<td>< 25 %</td>
<td>1</td>
</tr>
</tbody>
</table>

(Sumber: TIPHON)

Persamaan perhitungan throughput:

\[
\text{Throughput} = \frac{\text{Paket data diterima}}{\text{Lama pengamatan}}
\]

Tabel 5.4 Throughput merupakan standarisasi hasil pengukuran throughput menurut TIPHON, yang menyatakan bahwa katagori throughput sangat bagus apabila memiliki nilai 100%, throughput bagus memiliki nilai 75%, throughput sedang memiliki nilai 59%, dan jelek memiliki nilai dibawah 25%.
Tabel 5.5 Throughput Hari Pertama Pada Jam Tidak Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>THROUGHPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>0,001</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>0,002</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>0,001</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>0,001</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Dari hasil pengukuran dan perhitungan didapat nilai throughput untuk setiap komputer yang diuji pada pengujian laporan tabel 5.5 throughput pada jam tidak sibuk.

Tabel 5.6 Throughput Hari Pertama Pada Jam Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>THROUGHPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>2,339</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>1,897</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>1,256</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>1,847</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>1,080</td>
</tr>
</tbody>
</table>

Dari hasil pengukuran dan perhitungan didapat nilai throughput untuk setiap komputer yang di uji pada pengujian laporan tabel 5.6 throughput pada jam sibuk.

Tabel 5.7 Throughput Hari Kedua Pada Jam Tidak Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>THROUGHPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>0,158</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>0,084</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>0,083</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>0,136</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>0,170</td>
</tr>
</tbody>
</table>

Dari hasil pengukuran dan perhitungan didapat nilai throughput untuk setiap komputer yang di uji pada pengujian laporan tabel 5.7 throughput pada jam tidak sibuk.
Tabel 5.8 Throughput Hari Kedua Pada Jam Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>THROUGHPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>0,838</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>1,337</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>1,371</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>1,138</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>2,889</td>
</tr>
</tbody>
</table>

Dari hasil pengukuran dan perhitungan didapat nilai throughput untuk setiap komputer yang di uji pada pengujian laporan tabel 5.8 throughput pada jam sibuk.

Tabel 5.9 Throughput Hari Ketiga Pada Jam Tidak Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>THROUGHPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>0,122</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>0,122</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>0,121</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>0,214</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>0,129</td>
</tr>
</tbody>
</table>

Dari hasil pengukuran dan perhitungan didapat nilai throughput untuk setiap komputer yang di uji pada pengujian laporan tabel 5.9 throughput pada jam tidak sibuk.

Tabel 5.10 Throughput Hari Ketiga Pada Jam Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>THROUGHPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>1,890</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>1,844</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>1,871</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>1,837</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>1,878</td>
</tr>
</tbody>
</table>

Dari hasil pengukuran dan perhitungan didapat nilai throughput untuk setiap komputer yang di uji pada pengujian laporan tabel 5.10 throughput pada jam sibuk.
C. Delay (Latency)

Adalah waktu yang dibutuhkan data untuk menempuh jarak dari asal ke tujuan. Delay dapat dipengaruhi oleh jarak, media fisik, kongesti atau juga waktu proses yang lama. Menurut versi TIPHON (Joesman 2008), besarnya delay dapat diklasifikasikan sebagai berikut:

Tabel 5.11 One-Way Delay atau Latensi

<table>
<thead>
<tr>
<th>Katagori Latensi</th>
<th>Besar Delay</th>
<th>Indeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat Bagus</td>
<td>< 150 ms</td>
<td>4</td>
</tr>
<tr>
<td>Bagus</td>
<td>150 s/d 300 ms</td>
<td>3</td>
</tr>
<tr>
<td>Sedang</td>
<td>300 s/d 450 ms</td>
<td>2</td>
</tr>
<tr>
<td>Jelek</td>
<td>>450 ms</td>
<td>1</td>
</tr>
</tbody>
</table>

(Sumber: TIPHON)

Delay dapat di cari dengan membagi antara panjang paket yang di kirim (L, *packet length* (bit/s)) di bagi dengan *link bandwith* (R, *link bandwith* (bit/s)). Tabel 5.11 One-Way Delay atau Latensi merupakan standarisasi hasil pengukuran Delay menurut TIPHON, yang menyatakan bahwa katagori Delay sangat bagus apabila memiliki nilai dibawah 150 ms, bagus 150 ms sampai dengan 300 ms, sedang 300 sampai dengan 450 ms dan jelek apabila nilai delay lebih dari 450 ms.
Tabel 5.12 *Delay Hari Pertama* Pada Jam Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>296,618 / 81898 = 3,6217978</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>298,671 / 65511 = 4,5590969</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>297,900 / 44472 = 6,0698596</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>298,990 / 66119 = 4,5219982</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>298,874 / 38265 = 7,8106364</td>
</tr>
</tbody>
</table>

Hasil yang di dapat oleh penulis setelah melakukan pengujian selama tiga hari pada saat kondisi jam sibuk adalah bagus, hal ini di lihat dari hasil yang di dapat pada tabel 5.12 menurut standar TIPHON hasilnya rata-rata delay.

Tabel 5.13 *Delay Hari Pertama* Pada Jam Tidak Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>298,170 / 6208 = 711,1646778</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>297,093 / 3615 = 464,295034</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>298,604 / 4822 = 694,8700696</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>299,028 / 5550 = 935,0345912</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>297,156 / 6631 = 662,9642857</td>
</tr>
</tbody>
</table>

Hasil yang di dapat oleh penulis setelah melakukan pengujian selama satu hari pada saat kondisi jam tidak sibuk adalah bagus, hal ini di lihat dari hasil yang di dapat pada tabel 5.13 menurut standar TIPHON hasilnya rata-rata delay.

Tabel 5.14 *Delay Hari Kedua* Pada Jam Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>298,044 / 30784 = 9,6817827</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>297,140 / 48582 = 6,116257</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>298,876 / 48215 = 6,1988178</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>297,819 / 41528 = 7,1715228</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>298,980 / 104896 = 2,8502516</td>
</tr>
</tbody>
</table>
Hasil yang di dapat oleh penulis setelah melakukan pengujian selama tiga hari pada saat kondisi jam sibuk adalah bagus, hal ini di lihat dari hasil yang di dapat pada tabel 5.14 menurut standar TIPHON hasilnya rata-rata delay.

Tabel 5.15 Delay Hari Kedua Pada Jam Tidak Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>289,170 / 6208 = 48,0299613</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>297,093 / 3615 = 82,1834025</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>298,604 / 4822 = 61,9253422</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>299,028 / 5550 = 53,8789189</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>297,156 / 6631 = 44,8131504</td>
</tr>
</tbody>
</table>

Hasil yang di dapat oleh penulis setelah melakukan pengujian selama tiga hari pada saat kondisi jam tidak sibuk adalah bagus, hal ini di lihat dari hasil yang di dapat pada tabel 5.15 menurut standar TIPHON hasilnya rata-rata delay.

Tabel 5.16 Delay Hari Ketiga Pada Jam Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>298,620 / 68833 = 4,3383261</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>297,904 / 66932 = 4,181916</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>298,317 / 67915 = 4,3915053</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>298,925 / 66836 = 4,465833</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>299,106 / 68315 = 4,3783357</td>
</tr>
</tbody>
</table>

Hasil yang di dapat oleh penulis setelah melakukan pengujian selama tiga hari pada saat kondisi jam sibuk adalah bagus, hal ini di lihat dari hasil yang di dapat pada tabel 5.16 menurut standar TIPHON hasilnya rata-rata delay.
Tabel 5.17 *Delay* Hari Ketiga Pada Jam Tidak Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>297,343 / 4836 = 61,4853184</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>298,620 / 4743 = 62,9601518</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>297,858 / 4797 = 62,0925578</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>299,170 / 8136 = 36,7711406</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>297,187 / 5076 = 58,5474783</td>
</tr>
</tbody>
</table>

Hasil yang di dapat oleh penulis setelah melakukan pengujian selama tiga hari pada saat kondisi jam tidak sibuk adalah bagus, hal ini di lihat dari hasil yang di dapat pada tabel 5.17 menurut standar TIPHON hasilnya rata-rata delay.

d. Jitter Variasi Keadatangan Paket

Hal ini diakibatkan oleh variasi-variasi dalam panjang antrian, dalam waktu pengolahan data, dan juga dalam waktu penghimpunan ulang paket-paket di akhir perjalanan jitter. Jitter lazimnya disebut variasi delay, berhubungan erat dengan latency, yang menunjukkan banyaknya variasi delay pada transmisi data di jaringan. Terdapat empat kategori penurunan performans jaringan berdasarkan nilai peak jitter sesuai dengan versi TIPHON (Joesman 2008), yaitu : pengujian pada situs detik.com
Tabel 5.18 Jitter

<table>
<thead>
<tr>
<th>Katagori Degradasi</th>
<th>Peak Jitter</th>
<th>Indeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat Bagus</td>
<td>0 ms</td>
<td>4</td>
</tr>
<tr>
<td>Bagus</td>
<td>0 s/d 75 ms</td>
<td>3</td>
</tr>
<tr>
<td>Sedang</td>
<td>75 s/d 125 ms</td>
<td>2</td>
</tr>
<tr>
<td>Jelek</td>
<td>125 s/d 225 ms</td>
<td>1</td>
</tr>
</tbody>
</table>

(Sumber: TIPHON)

Persamaan perhitungan jitter:

\[
\text{Jitter} = \frac{\text{Total variasi delay}}{\text{Total paket yang diterima}}
\]

Total variasi delay diperoleh dari:

Total variasi delay = Delay - Rata-rata Delay

Tabel 5.18 Jitter merupakan tabel standarisasi dari hasil pengukuran jitter menurut TIPHON, yang menyatakan bahwa jitter dinyatakan sangat bagus apabila memiliki nilai 0 ms, bagus 0 sampai dengan 75 ms, sedang 75 sampai 125 ms, dan jelek apabila nilai jitter 125 sampai dengan 255 ms.

Tabel 5.19 Jitter Hari Pertama Pada Jam Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>JITTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>3,6217978 / 81898 = 0,0000424</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>4,5590969 / 65511 = 0,0000696</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>6,0698596 / 44472 = 1,3662504</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>4,5219982 / 66119 = 0,0000684</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>7,8106364 / 38265 = 0,0000241</td>
</tr>
</tbody>
</table>

Setelah penulis melakukan pengukuran Jitter pada PT. PLN (Persero) Palembang, maka didapatkan hasil yang menunjukan bahwa hasil nilai pengukuran dihari pertama pada jam sibuk
adalah jitter pada komputer pertama 0,0000424, kedua 0,0000696, ketiga 1,3662504, keempat 0,0000684, kelima 0,000241.

Tabel 5.20 Jitter Hari Pertama Pada Jam Tidak Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>JITTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>71,11646778 / 419 = 1,6972904</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>64,64295034 / 644 = 0,720955</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>69,48700696 / 431 = 1,6122275</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>93,50345912 / 318 = 2,9403603</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>66,29642857 / 448 = 1,479831</td>
</tr>
</tbody>
</table>

Setelah penulis melakukan pengukuran Jitter pada PT. PLN (Persero) Palembang, maka didapatkan hasil yang menunjukan bahwa hasil nilai pengukuran dihari pertama pada jam Tidak sibuk adalah jitter pada komputer pertama 1,6972904, kedua 0,720955, ketiga 1,6122275, keempat 2,9403603, kelima 1,479831.

Tabel 5.21 Jitter Hari Kedua Pada Jam Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>JITTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>9,6817827 / 30784 = 0,00003195</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>6,116257 / 48582 = 1,25895538</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>6,1988178 / 48215 = 1,28566168</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>7,1715228 / 41528 = 0,0001727</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>2,8502517 / 104896 = 0,0000272</td>
</tr>
</tbody>
</table>

Setelah penulis melakukan pengukuran Jitter pada PT. PLN (Persero) Palembang, maka didapatkan hasil yang menunjukan
bahwa hasil nilai pengukuran dihari kedua pada jam sibuk adalah jitter pada komputer pertama 0,0003195, kedua 1,25895538, ketiga 1,28566168, keempat 0,0001727, kelima 0,0000272.

Tabel 5.22 *Jitter* Hari Kedua Pada Jam Tidak Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>JITTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>48,0299613 / 6208 = 0,0077368</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>82,1834025 / 3615 = 0,0227339</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>61,9253422 / 4822 = 0,0128422</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>53,8789189 / 3550 = 0,0097079</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>44,8131504 / 6631 = 0,0067581</td>
</tr>
</tbody>
</table>

Setelah penulis melakukan pengukuran Jitter pada PT. PLN (Persero) Palembang, maka didapatkan hasil yang menunjukkan bahwa hasil nilai pengukuran dihari kedua pada jam Tidak sibuk adalah jitter pada komputer pertama 0,0077368, kedua 0,0227339, ketiga 0,0128422, keempat 0,0097079, kelima 0,0067581.

Tabel 5.23 *Jitter* Hari Ketiga Pada Jam Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>JITTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>4,3383261 / 68833 = 0,10354002</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>4,181916 / 66932 = 0,0064936584</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>4,3925053 / 67915 = 0,0101914276</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>4,4465833 / 66936 = 0,0140435</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>4,3783357 / 68315 = 0,0097730708</td>
</tr>
</tbody>
</table>
Setelah penulis melakukan pengukuran Jitter pada PT. PLN (Persero) Palembang, maka didapatkan hasil yang menunjukkan bahwa hasil nilai pengukuran dihari ketiga pada jam sibuk adalah jitter pada komputer pertama 0,10354002, kedua 0,0064936584, ketiga 0,0101914276, keempat 0,0140435, kelima 0,0097730708.

Tabel 5.24 Jitter Hari Ketiga Pada Jam Tidak Sibuk :

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>JITTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>61,4853184 / 4836 = 0,012714</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>62,9601518 / 4743 = 0,0132743</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>62,0925578 / 4797 = 0,012944</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>36,7711406 / 8136 = 0,0045195</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>58,5474783 / 5076 = 0,0115341</td>
</tr>
</tbody>
</table>

Setelah penulis melakukan pengukuran Jitter pada PT. PLN (Persero) Palembang, maka didapatkan hasil yang menunjukkan bahwa hasil nilai pengukuran dihari ketiga pada jam Tidak sibuk adalah jitter pada komputer pertama 0,012714, kedua 0,0132743, ketiga 0,012944, keempat 0,0045195, kelima 0,0115341.

D. Packet Loss

Merupakan suatu parameter yang menggambarkan suatu kondisi yang menunjukkan jumlah total paket yang hilang, dapat terjadi karena *collision* dan *congestion* pada jaringan. nilai *packet loss* sesuai dengan versi TIPHON (Telecommunications
and Internet Protocol Harmonization Over Networks) (Joesman 2008).

Faktor penyebab *packet Loss* dapat terjadi karena *collision* atau tabrakan/tumbukan antara data pada jaringan dan hal ini berpengaruh pada semua aplikasi yang ada di jaringan *LAN* PT.PLN (Persero) karena *retransmission* akan mengurangi efisiensi jaringan secara keseluruhan meskipun jumlah *bandwidth* cukup tersedia untuk aplikasi-aplikasi tersebut. Umumnya perangkat jaringan memiliki *buffer* untuk menampung data yang diterima. Jika terjadi *kongesti* atau kelebihan beban dalam jaringan *LAN* yang cukup lama, *buffer* akan penuh, dan data baru tidak akan diterima, hal inilah yang bisa menyebabkan *packet Loss*.

Tabel 5.25 *Packet Loss*

<table>
<thead>
<tr>
<th>Katagori Degradasi</th>
<th>Peak Loss</th>
<th>Indeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat Bagus</td>
<td>0 %</td>
<td>4</td>
</tr>
<tr>
<td>Bagus</td>
<td>3 %</td>
<td>3</td>
</tr>
<tr>
<td>Sedang</td>
<td>15 %</td>
<td>2</td>
</tr>
<tr>
<td>Jelek</td>
<td>25 %</td>
<td>1</td>
</tr>
</tbody>
</table>

(Sumber : TIPHON)

Persamaan perhitungan packet loss :

\[
\text{Packet loss} = \frac{(\text{Paket data dikirim} - \text{Paket data diterima}) \times 100}{\text{Paket data yang dikirim}}
\]
Tabel 5.25 Packet Loss merupakan standarisasi hasil pengukuran Paket Loss menurut TIPHON, yang menyatakan bahwa paket loss dikatakan sangat bagus apabila memiliki nilai 0%, bagus 3%, sedang 15%, dan jelek 25%.

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>PACKET LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>$\frac{8198-8198}{8198} \times 100% = 0%$</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>$\frac{65511-65511}{65511} \times 100% = 0%$</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>$\frac{44472-44472}{44472} \times 100% = 0%$</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>$\frac{66119-66119}{66119} \times 100% = 0%$</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>$\frac{38256-38256}{38256} \times 100% = 0%$</td>
</tr>
</tbody>
</table>

Setelah penulis melakukan pengukuran Packet Loss pada PT. PLN (Persero) Palembang, maka didapatlah hasil yang menunjukkan bahwa hasil dari pengukuran di hari pertama pada jam sibuk adalah packet loss pada komputer 1 sampai 5 memiliki hasil packet loss yang sama, yaitu 0% hal ini
menunjukan bahwa saat pengujian, jaringan pada PT. PLN (Persero) Palembang dalam kondisi yang sangat baik.

Tabel 5.27 Paket Lost Hari Pertama Pada Jam Tidak Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>PACKET LOSS</th>
</tr>
</thead>
</table>
| 1 | 172.16.1.4 | \[
\frac{419-419}{419} \times 100 \% = 0 \%
\] |
| 2 | 172.16.1.9 | \[
\frac{644-644}{644} \times 100 \% = 0 \%
\] |
| 3 | 172.16.1.26 | \[
\frac{431-431}{431} \times 100 \% = 0 \%
\] |
| 4 | 172.16.1.56 | \[
\frac{318-318}{318} \times 100 \% = 0 \%
\] |
| 5 | 172.16.1.98 | \[
\frac{448-448}{448} \times 100 \% = 0 \%
\] |

Setelah penulis melakukan pengukuran Packet Loss pada PT. PLN (Persero) Palembang, maka didapatalah hasil yang menunjukan bahwa hasil dari pengukuran di hari pertama pada jam tidak sibuk adalah packet loss pada komputer 1 sampai 5 memiliki hasil packet loss yang sama, yaitu 0% hal ini menunjukan bahwa saat pengujian, jaringan pada PT. PLN (Persero) Palembang dalam kondisi yang sangat baik.
Tabel 5.28 *Paket Lost* Hari Kedua Pada Jam Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>PACKET LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>$\frac{30784 - 30784}{30784} \times 100% = 0%$</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>$\frac{48582 - 48582}{48582} \times 100% = 0%$</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>$\frac{48215 - 48215}{48215} \times 100% = 0%$</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>$\frac{41528 - 41528}{41528} \times 100% = 0%$</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>$\frac{104896 - 104896}{104896} \times 100% = 0%$</td>
</tr>
</tbody>
</table>

Setelah penulis melakukan pengukuran Packet Loss pada PT. PLN (Persero) Palembang, maka didapatlah hasil yang menunjukkan bahwa hasil dari pengukuran di hari kedua pada jam sibuk adalah packet loss pada komputer 1 sampai 5 memiliki hasil packet loss yang sama, yaitu 0% hal ini menunjukkan bahwa saat pengujian, jaringan pada PT. PLN (Persero) Palembang dalam kondisi yang sangat baik.
Setelah penulis melakukan pengukuran Packet Loss pada PT. PLN (Persero) Palembang, maka didapatlah hasil yang menunjukan bahwa hasil dari pengukuran di hari kedua pada jam tidak sibuk adalah packet loss pada komputer 1 sampai 5 memiliki hasil packet loss yang sama, yaitu 0% hal ini menunjukan bahwa saat pengujian, jaringan pada PT. PLN (Persero) Palembang dalam kondisi yang sangat baik.

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>PACKET LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>$\frac{6208 - 6208}{6208} \times 100% = 0%$</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>$\frac{3615 - 3615}{3615} \times 100% = 0%$</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>$\frac{4822 - 4822}{4822} \times 100% = 0%$</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>$\frac{5550 - 5550}{5550} \times 100% = 0%$</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>$\frac{6631 - 6631}{6631} \times 100% = 0%$</td>
</tr>
</tbody>
</table>
Tabel 5.30 Paket Lost Hari Ketiga Pada Jam Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>PACKET LOSS</th>
</tr>
</thead>
</table>
| 1 | 172.16.1.4 | \[
\frac{68833 - 68833}{68833} \times 100\% = 0\%
\] |
| 2 | 172.16.1.9 | \[
\frac{66932 - 66932}{66932} \times 100\% = 0\%
\] |
| 3 | 172.16.1.26 | \[
\frac{67915 - 67915}{67915} \times 100\% = 0\%
\] |
| 4 | 172.16.1.56 | \[
\frac{66936 - 66936}{66936} \times 100\% = 0\%
\] |
| 5 | 172.16.1.98 | \[
\frac{68315 - 68315}{68315} \times 100\% = 0\%
\] |

Setelah penulis melakukan pengukuran Packet Loss pada PT. PLN (Persero) Palembang, maka didapatkan hasil yang menunjukkan bahwa hasil dari pengukuran di hari ketiga pada jam sibuk adalah packet loss pada komputer 1 sampai 5 memiliki hasil packet loss yang sama, yaitu 0% hal ini menunjukkan bahwa saat pengujian, jaringan pada PT. PLN (Persero) Palembang dalam kondisi yang sangat baik.
Setelah penulis melakukan pengukuran Packet Loss pada PT. PLN (Persero) Palembang, maka didapatlah hasil yang menunjukkan bahwa hasil dari pengukuran di hari ketiga pada jam tidak sibuk adalah packet loss pada komputer 1 sampai 5 memiliki hasil packet loss yang sama, yaitu 0% hal ini menunjukkan bahwa saat pengujian, jaringan pada PT. PLN (Persero) Palembang dalam kondisi yang sangat baik.

Tabel 5.31 Paket Lost Hari Ketiga Pada Jam Tidak Sibuk:

<table>
<thead>
<tr>
<th>No</th>
<th>IP ADDRESS</th>
<th>PACKET LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.1.4</td>
<td>$\frac{4838 - 4838}{4838} \times 100% = 0%$</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.9</td>
<td>$\frac{4743 - 4743}{4743} \times 100% = 0%$</td>
</tr>
<tr>
<td>3</td>
<td>172.16.1.26</td>
<td>$\frac{4797 - 4797}{4797} \times 100% = 0%$</td>
</tr>
<tr>
<td>4</td>
<td>172.16.1.56</td>
<td>$\frac{8136 - 8136}{8136} \times 100% = 0%$</td>
</tr>
<tr>
<td>5</td>
<td>172.16.1.98</td>
<td>$\frac{5076 - 5076}{5076} \times 100% = 0%$</td>
</tr>
</tbody>
</table>
5.4 Pengujian Data

5.4.1 Menghitung nilai rata – rata total variabel

Tabel 5.32 Rata – Rata Bandwidth

<table>
<thead>
<tr>
<th>Hari</th>
<th>Bandwidth (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jam Sibuk</td>
</tr>
<tr>
<td>Hari 1</td>
<td>1,37</td>
</tr>
<tr>
<td>Hari 2</td>
<td>0,74</td>
</tr>
<tr>
<td>Hari 3</td>
<td>0,65</td>
</tr>
</tbody>
</table>

Dari hasil rata – rata perhitungan Bandwidth hari pertama maka didapatkan hasil 1,37 Mbps pada jam sibuk dan 2,88 Mbps pada jam tidak sibuk, hari kedua 0,74 Mbps pada jam sibuk dan 2,91 Mbps pada jam tidak sibuk, dan hari ketiga 0,65 Mbps pada jam sibuk dan 2,94 Mbps pada jam tidak sibuk.

Tabel 5.33 Rata – Rata Throughput

<table>
<thead>
<tr>
<th>Hari</th>
<th>Throughput (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jam Tidak Sibuk</td>
</tr>
<tr>
<td>Hari 1</td>
<td>0,0012</td>
</tr>
<tr>
<td>Hari 2</td>
<td>0,1262</td>
</tr>
<tr>
<td>Hari 3</td>
<td>0,1416</td>
</tr>
</tbody>
</table>

Dari hasil rata – rata perhitungan Throughput hari pertama maka didapatkan hasil 0,0012 Mbps pada jam sibuk dan 1,6838 Mbps pada jam tidak sibuk, hari kedua 0,1262 Mbps pada jam sibuk dan 1,5146
Mbps pada jam tidak sibuk, dan hari ketiga 0,1416 Mbps pada jam sibuk dan 1,864 Mbps pada jam tidak sibuk.

Tabel 5.34 Rata – Rata Delay

<table>
<thead>
<tr>
<th>Hari</th>
<th>Delay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jam Sibuk</td>
</tr>
<tr>
<td>Hari 1</td>
<td>5,31667778</td>
</tr>
<tr>
<td>Hari 2</td>
<td>6,40372638</td>
</tr>
<tr>
<td>Hari 3</td>
<td>4,35118322</td>
</tr>
</tbody>
</table>

Dari hasil rata – rata perhitungan *Delay* hari pertama maka didapatkan hasil 5,31667778 Ms pada jam sibuk dan 693,66573 Ms pada jam tidak sibuk, hari kedua 6,40372638 Ms pada jam sibuk dan 58,166155 Ms pada jam tidak sibuk, dan hari ketiga 4,35118322 Ms pada jam sibuk dan 56,371329 Ms pada jam tidak sibuk.

Tabel 5.35 Rata- Rata Jitter

<table>
<thead>
<tr>
<th>Hari</th>
<th>Jitter (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jam Sibuk</td>
</tr>
<tr>
<td>Hari 1</td>
<td>0,27329098</td>
</tr>
<tr>
<td>Hari 2</td>
<td>0,50896978</td>
</tr>
<tr>
<td>Hari 3</td>
<td>0,02880834</td>
</tr>
</tbody>
</table>

Dari hasil rata – rata perhitungan *Jitter* hari pertama maka didapatkan hasil 0,27329098 Ms pada jam sibuk dan 1,6901328 Ms pada jam tidak sibuk, hari kedua 0,50896978 Ms pada jam sibuk dan 0,0119558 Ms pada jam tidak sibuk, dan hari ketiga 0,02880834 Ms pada jam sibuk dan 0,0109972 Ms pada jam tidak sibuk.
Tabel 5.36 Rata – Rata Packet Loss

<table>
<thead>
<tr>
<th>Hari</th>
<th>Jam Sibuk</th>
<th>Jam Tidak Sibuk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hari 1</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hari 2</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hari 3</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Dari hasil rata – rata perhitungan Packet Loss hari pertama maka didapatkan hasil 0% pada jam sibuk dan 0% pada jam tidak sibuk, hari kedua 0% pada jam sibuk dan 0% pada jam tidak sibuk, dan hari ketiga 0% pada jam sibuk dan 0% pada jam tidak sibuk.

5.4.2. Perbandingan pengujian variabel

Tabel 5.37 Perbandingan Pengujian

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hari pertama</th>
<th>Hari kedua</th>
<th>Hari ketiga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jam Sibuk</td>
<td>Jam Tidak Sibuk</td>
<td>Jam Sibuk</td>
</tr>
<tr>
<td>Bandwith</td>
<td>1,37 mbps</td>
<td>2,88 mbps</td>
<td>0,74 mbps</td>
</tr>
<tr>
<td>Throughput</td>
<td>0,0012 mbps</td>
<td>1,6838 mbps</td>
<td>0,1262 mbps</td>
</tr>
<tr>
<td>Delay</td>
<td>5,3166777 ms</td>
<td>693,66573 ms</td>
<td>6,4037263 ms</td>
</tr>
<tr>
<td>Jitter</td>
<td>0,2732909 ms</td>
<td>1,6901328 ms</td>
<td>0,5089697 ms</td>
</tr>
<tr>
<td>Packet Los</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Dari hasil tabel perbandingan, maka penulis dapat menarik kesimpulan bahwa penggunaan Bandwith pada jam tidak sibuk lebih banyak dibandingkan pada jam sibuk, throughput pada jam sibuk lebih cepat dibandingkan pada jam tidak sibuk, jarak Delay jam sibuk lebih lambat dari pada jarak Delay jam tidak sibuk,

5.4.3. Menentukan banyak kelas. Banyak kelas yang digunakan adalah 5, yakni kategori: Sangat Baik, Baik, Sedang, Buruk, Sangat buruk.

Tabel 5.38 Menentukan Katagori

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hari pertama</th>
<th>Hari kedua</th>
<th>Hari ketiga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jam Sibuk</td>
<td>Jam Tidak Sibuk</td>
<td>Jam Sibuk</td>
</tr>
<tr>
<td>Throughput</td>
<td>Sedang</td>
<td>Jelek</td>
<td>Sedang</td>
</tr>
<tr>
<td>Delay</td>
<td>Sangat Baik</td>
<td>Baik</td>
<td>Sangat Baik</td>
</tr>
<tr>
<td>Jitter</td>
<td>Baik</td>
<td>Baik</td>
<td>Baik</td>
</tr>
<tr>
<td>Packet Loss</td>
<td>Sangat Baik</td>
<td>Sangat Baik</td>
<td>Sangat Baik</td>
</tr>
</tbody>
</table>

Dari hasil menentukan katagori, penulis dapat menyatakan bahwa Throughput hari pertama pada jam sibuk termasuk katagori sedang dan jam tidak sibuk termasuk katagori jelek, hari kedua pada jam sibuk termasuk katagori sedang dan jam tidak sibuk termasuk katagori jelek, hari ketiga pada jam sibuk termasuk katagori bagus dan jam tidak sibuk termasuk katagori jelek, untuk Delay hari pertama pada jam sibuk termasuk katagori sangat baik dan jam tidak sibuk termasuk katagori baik, hari kedua pada jam sibuk termasuk katagori sangat baik dan jam tidak sibuk termasuk katagori baik, hari ketiga pada jam sibuk termasuk katagori sangat baik dan jam tidak sibuk termasuk katagori baik, sedangkan Jitter
hari pertama pada jam sibuk termasuk katagori baik dan jam tidak sibuk termasuk katagori baik, hari kedua jam sibuk termasuk katagori baik dan jam tidak sibuk termasuk katagori baik, hari ketiga pada jam sibuk termasuk katagori baik dan jam tidak sibuk termasuk katagori baik, dan Packet Loss pada hari pertama sampai hari ketiga jam sibuk dan jam tidak sibuk termasuk katagori sangat baik.

5.5 Pembahasan

Berdasarkan hasil yang di dapat dari pengujian yang di lakukan oleh penulis selama tiga hari dan di lakukan pengambilan sampel dari lima komputer yang ada pada PT.PLN (Persero) Palembang, penulis dapat hasil pada jaringan yang ada pada PT.PLN (Persero) Palembang, penjelasan tentang bandwidth hasil yang di dapat oleh penulis adalah pembagian bandwidth yang ada pada PT.PLN (Persero) Palembang tebagi secara merata, dalam kondisi penggunaan jaringan yang berada pada jam tidak sibuk atupun jam sibuk, Throughput hasil yang di dapat oleh penulis adalah Throughput yang ada pada PT.PLN (Persero) Palembang dalam keadaan baik, dalam pengujian yang di dapat kondisi jaringan yang paling buruk adalah 16 b/s di mana hal itu terjadi pada jaringan yang sedang sibuk, sedangana dengan perbandingan jumlah bandwidth yang ada pada PT.PLN (Persero) Palembang, pada jam keadaan sibuk sekitar 1Mbps, sedangana Delaydengan rata-rata yang di dapat pada jam tidak sibuk dan jam sibuk tidak ada yang
lebih dari 300 ms hal ini disebabkan oleh kecepatan internet atau bandwidth yang diterima client dari ISP (Internet Service Provider) sehingga mengalami variasi delay atau waktu kedatangan paket yang menyebabkan penyempitan bandwidth dan antrian. Untuk mengurangi nilai dalam komunikasi dibutuhkan bandwidth transmisi yang memadai dan menjauhkan media transmisi dari medan listrik dan menggunakan kabel yang terisolasi untuk menghindari dari noise. sedangkan pada packet loss pada salah satu komputer yang di uji pada jam tidak sibuk terdapat packet loss dengan nilai dua, hal ini di sebabkan terjadinya permasalahan pada ISP (Internet Service Provider) atau pun bisa juga di karnakan permasalahan dari software yang ada pada komputer tersebut. Sedangkan untuk nilai yang lain yang ada pada packet loss dianggap merupakan nilai yang wajar karna dalam keadaan internet yang telah terbagi dan banyaknya penggunaan pada suatu jaringan yang mengakibatkan kemacetan pada jaringan yang menimbulkan tidak di terimanya packet oleh situs yang dituju.
BAB VI
KESIMPULAN DAN SARAN

6.1 Simpulan

6.1.1 Kesimpulan Graphing pada Mikrotik

Graphing pada mikrotik dapat difungsikan agar admin pada PT.PLN (Persero) Palembang dapat mengecek penggunaan jaringan internet yang ada, admin dapat mengecek dalam waktu tertentu, tampilan Graphing berupa laporan yang ditampilkan melalui browser.

6.1.2 Kesimpulan Aplikasi DUDE

Aplikasi DUDE dapat digunakan pada PT.PLN (Persero) Palembang dimana aplikasi ini dapat digunakan untuk pengecekan pengguna dengan secara langsung yang terhubung dengan jaringan yang ada, Aplikasi ini digunakan untuk penggunaan monitoring secara langsung tampilan berupa laporan dan dapat berkomunikasi secara langsung dengan komputer client yang ada.

6.1.3 Kesimpulan Monitoring Jaringan Local Wireshark

Hasil monitoring yang didapat oleh penulis selama melakukan pengamatan pada PT.PLN (Persero) Palembang adalah kualitas jaringan yang ada pada PT.PLN (Persero) Palembang dianggap telah dalam kondisi baik, namun terjadi perbedaan parameter QOS pada saat jam sibuk dan jam tidak sibuk. Hal ini dikarenakan pengujian pada jam sibuk lebih banyak dibandingkan pengguna pada jam tidak sibuk, tetapi meskipun pengguna pada jam sibuk lebih banyak dari jam...
tidak sibuk, hampir semua parameter yang menjadi standar pengujian dipenuhi oleh jaringan yang ada pada PT. PLN (persero) Palembang.

6.2 Saran

1. Menyediakan **ISP backup** agar bila sewaktu-waktu internet utama digunakan mengalami kondisi *down* dapat langsung menggunakan internet *backup*.

2. Apabila *client* kedapatan menggunakan banwidth berlebihan, maka akan di putuskan koneksiinya.

3. Rutin melakukan monitoring serta membuat laporan kondisi jaringan dengan menggunakan axennettools.

4. agar teknik QOS ini dapat berkembang lebih baik lagi disarankan untuk mangaturpemakain *bandwith* dalam jaringan sebaik mungkin.

5. Evaluasi infrastruktur jaringan dan manejemen jaringan.
DAFTAR PUSTAKA

